

Modeling of Visual Perception of a Perspective Scene in an Active Control Task

Mary K. Kaiser, Ph.D.

Barbara T. Sweet, Ph.D.

NASA Ames Research Center

What features are most important to retain in a simulated visual scene?

Outline

- Background
- Model Description
- Longitudinal Control
- Pitch Control
- Conclusions

Background

- Traditional Approaches
 - Psychophysics -- "Action Happens"
 - Manual Control "Perception Happens"
- Current Approach
 - Combine traditional Psychophysics methods with Manual Control modeling
- Potential Applications
 - Design: Simulator visual scene, UAV display, cockpit FOV/layout, airport/heliport markings
 - Analysis: Accident investigation

Traditional Psychophysics

 Describes the mappings between physical stimulation and sensation/perception

Limits of Traditional Approach

- Data derived from perceptual judgments (verbal), not visuomotor control
- Judgments based on single stimulus cue
 (e.g., binocular disparity, relative size)

Perceptual Judgments vs. Visuomotor Control

"The visual mechanisms underlying perception and visuomotor control can operate independently..."

- Milner and Goodale, 1996

Titchener circles illusion: "Eye is fooled, Hand is not"

Solution: "Active Psychophysics" – emerging discipline that our work builds upon

Single Stimulus versus Multiple Cues (Example: Distance)

- Taxonomies of depth cues long developed
 - Bishop Berkeley (18th century)
 - Primary (Physiological)
 - Secondary (Pictorial)
 - Motion (developed later)
- Cue Integration models fairly recent
 - Bruno & Cutting, 1988
 - Massaro & Cohen, 1993
 - Landy Maloney, Johnston, & Young, 1995

Limits of Current Integration Models

- Primarily examine static depth perception
 - Static: motion cues seldom included
 - Depth: relative distance, not closure
 - Perception: not control of range / range rate
- Fail to fully characterize integration dynamics
 - Quality of information, sort of; nature of task, no

"Visual Cue Integration Modeling" – emerging discipline that our work builds upon

Manual Control

 Describes compensation human operator provides as part of a control loop

 Vehicle characteristics affect information requirements for the human operator

Quick Laplace Tutorial

Description	Laplace	Time
gain	Y(s) = K	o(t) = K i(t)
differentiation	Y(s) = s	o(t) = di(t)/dt
time delay	$Y(s) = e^{-s\tau}$	$o(t) = i(t-\tau)$
integration	Y(s) = 1/s	$o(t) = \int i(t)dt$

Quick Laplace Tutorial (cont)

An integrator attenuates the input

Human Operator Modeling

Operator characteristics vary as a function of the controlled element

Crossover Model

$$Y_{p}Y_{c} = \omega_{c}e^{-s\tau}$$

$$S$$

$$C^{-s\tau} = time delay$$

$$1/s = integrator$$

The pilot will provide whatever compensation is necessary to yield an open-loop pilot/vehicle transfer function that resembles K/s in the region of the open-loop crossover frequency.

Pilot Compensation Requirements

$$Y_p Y_c = \omega_c e^{-s\tau}$$

$Y_c = K$	$Y_p = K_p e^{-s\tau}/s$
$Y_c = K/s$	$Y_p = K_p e^{-s\tau}$
$Y_c = K/s^2$	$Y_p = K_p s e^{-s\tau}$

Description	Example
Position Control $Y_c = K$	Mouse; tire angle to steering wheel deflection
Velocity Control $Y_c = K/s$	Aircraft attitude w/ SAS; vehicle heading to steering wheel deflection
Acceleration Control: $Y_c = K/s^2$	Spacecraft attitude/position control; vehicle lateral position to steering wheel deflection

Description	Example
Position Control $Y_c = K$	Mouse; tire angle to steering wheel deflection
Velocity Control $Y_c = K/s$	Aircraft attitude w/ SAS; vehicle heading to steering wheel deflection
Acceleration Control: $Y_c = K/s^2$	Spacecraft attitude/position control; vehicle lateral position to steering wheel deflection

Description	Example
Position Control $Y_c = K$	Mouse; tire angle to steering wheel deflection
Velocity Control $Y_c = K/s$	Aircraft attitude w/ SAS; vehicle heading to steering wheel deflection
Acceleration Control: $Y_c = K/s^2$	Spacecraft attitude/position control; vehicle lateral position to steering wheel deflection

Description	Example
Position Control $Y_c = K$	Mouse; tire angle to steering wheel deflection
Velocity Control $Y_c = K/s$	Aircraft attitude w/ SAS; vehicle heading to steering wheel deflection
Acceleration Control: $Y_c = K/s^2$	Spacecraft attitude/position control; vehicle lateral position to steering wheel deflection

Modeling Approach

Modeling Approach

- Represent perception as a combination of vehicle states
- Combinatory weights are a function of visual cues
- Resulting open-loop model should still be consistent with Manual Control characteristics

Longitudinal Position Control Task

- Objective: determine visual scene characteristics used for position control
 - Displays: varied ground plane markings (lines, grids, dot textures)
 - Disturbances: longitudinal vs longitudinal + pitch
 - Task: maintain longitudinal position (no control of pitch) with lightly-damped acceleration-control task

Example Scene

Scene Combinations

Results

- Identified model accounting for scene perception
- Strong evidence of different cues for position and velocity
- Position perception -> contaminated by pitch
- Velocity perception -> pitch contamination a function of ground markings
 - Lines of splay improve performance
 - Dots improve performance, not as much as lines of splay
 - Operators appear to use lower/outer corners of display for velocity perception

Pitch Attitude Control Task

- Inverse of longitudinal position control: control pitch attitude in the presence of an uncontrollable longitudinal disturbance
- With and without visible horizon (fog)
- Rate-control vs acceleration-control

Example Scene (no fog)

Scene Combinations

Results

- The horizon is a great pitch attitude cue!
- Ground texture improves velocity sensing and performance in the acceleration control task
- "Aligned" texture (providing splay cue) improves performance in the acceleration control task

Conclusions

- Important to consider task and vehicle dynamics when designing simulated visual scenes
- Scene texture, particularly in the near field, supports motion detection
- Conversely, care must be taken to prevent temporal aliasing artifacts
- Larger field-of-views help to support improved distinction between positional and attitudinal state changes

Future Plans

- Extend modeling techniques to more complex/coupled vehicle dynamics
- Extend modeling techniques to more complex scenery
- Examine visual motion detection and methods to minimize objectionable motionrelated simulator artifacts